Barnacles (Cirripedia: Thoracica) of seas off the Straits of Gibraltar

by Brian A. FOSTER1 and John S. BUCKERIDGE

Abstract. — The barnacles collected in dredges and grabs from stations in and off the Straits of Gibraltar (BALGIM 1984 cruise) which were sorted at CENTOB in Brest, are systematically considered. A few other deep-sea barnacles are also considered. Of the eighteen species illustrated, three are new to science. Particular attention is given to species of Scalpellinae with eleven species (two new), and Verrucidae with four species (one new). This paper determines only the species and their biogeography, leaving aside questions of generic categorisation, phylogeny, and the particular ecological and hydrological circumstances of each cruise.

Keywords. — Gibraltar, Poecilasmatidae, Scalpellidae, Verrucidae, Pachylasmatidae, Balanidae, new taxa, biogeography.

INTRODUCTION

This paper reports on a collection of barnacles the late Professor Brian FOSTER received from the Centre national de tri d’océanographie biologique (CENTOB), Brest. They were collected by the BALGIM expedition, during May-June 1984, from either side of the Straits of Gibraltar, particularly into the Ibero-Moroccan Bay of the Atlantic Ocean, by R. V. “Cryos” on behalf of the Centre national de la recherche scientifique (PIROCEAN) under the direction of Dr P. BOUCHET. Eighteen different species of cirripedes, from 126 stations were collected. A further ten samples from various deep-sea cruises in the Atlantic Ocean and three samples from the CORINDON II cruise in Indonesia were also forwarded for determination and contained specimens useful for present purposes. All stations and species data are listed in Appendix A.

1. Deceased, formerly of the Zoology Department, University of Auckland, Auckland, New Zealand.
The main collection results primarily from multiple deep-sea dredging in geographically confined areas, and includes deep-sea material which has been known only from few specimens and inadequate descriptions. The type localities for a number of early descriptions of *Verruca* (*sensu lato*) and *Scalpellum* (*sensu lato*) result from collections from “Talisman” cruises in the Atlantic from the Bay of Biscay to the Cape Verde Islands, “Travailleur” cruises in Mediterranean and the Bay of Biscay, and cruises by the Prince of Monaco in the Azores area (Aurivillius, 1898; Gruvel, 1900a, 1900b, 1902). The BALGIM material enables a better appreciation of specific variation covered by a number of nominate species described from these early cruises.

This study deals solely with systematics and broad biogeography, leaving bathymetry, hydrology and ecology for later consideration.

The paper is derived from a manuscript submitted to the *Bulletin du Muséum national d’Histoire naturelle*, Paris, prior to Brian Foster’s untimely death. As the original manuscript incorporated a study of both Indian and Atlantic faunas, it was recommended that it be split, with each geographic area considered separately. The results for the Indian Ocean cruises has now been published (Foster & Buckeridge, 1994). This manuscript incorporates any changes in cirripede phylogeny that have occurred since the preparation of Foster’s manuscript, and further drawings have been added where necessary, ensuring that all described taxa are illustrated.

MATERIALS AND METHODS

The cruise and station data relevant to the various samples are given in Appendix A. In the following systematic treatment, the stations are referred to by the nomenclature on the labels included in the bottles, namely collecting gear and station number. The gear used was as follows: CP, beam trawl; DC, Charcot-Picard dredge; DR, rock dredge; DS, Sanders dredge; DW, Waren dredge; FA, Faubert bottom net trawl; PI, submersible dive or SCUBA diver.

Specimens were sorted at CENTOB and preserved in alcohol. They were examined with the aid of microscopy and dissection. Species regarded as new to science are given a full description. Others are illustrated from specimens, and their anatomy commented on where existing descriptions need amplification. Illustrations of whole animals and shells were drawn with the aid of a drawing tube. Appendages were mounted in polyvinyl lactophenol and drawn with a camera lucida. Segments of cirri and caudal appendages were counted per rami, and where a single average figure is given it has been rounded up to an integer value for the complete rami.

All material is lodged in the Muséum national d’Histoire naturelle (MNHN), Paris.

SYSTEMATIC PART

LIST OF SPECIES

Family Poecilasmatidae Annandale, 1910

Xrotolasmis nierstraszi (Hoek, 1907)
Poecilasma kaempferi Darwin, 1851
Family Scalpellidae Pilsbry, 1907
Smilium acutum (Hoek, 1883)
Trianguloscalpellum regium (W. Thomson, 1873)
Trianguloscalpellum gigas (Hoek, 1883)
Arcoscalpellum michelottianum (Seguenza, 1876)
Arcoscalpellum crenulatum sp. nov.
Amigdoscalpellum praeceps (Hoek, 1907)
Verum ?minutum (Hoek, 1883)
Meroscalpellum bifurcatum (Zevina, 1973)
Verum novaezelandiae (Hoek, 1883)
Verum frillosum sp. nov.
Ornatoscalpellum stroemii (Sars, 1859)
Scalpellum scalpellum (Linnaeus, 1767)

Family Verrucidae Darwin, 1854
Verruca trisulcata Gruvel, 1900
Altiverruca gibbosa Hoek, 1883
Altiverruca vertica sp. nov.
Metaverruca recta (Aurivillius, 1898)

Family Pachylasmatidae Buckeridge, 1983
Pachylasma giganteum (Philippi, 1836)

Family Bathylasmatidae Newman & Ross, 1971
Bathylasma hirsutum (Hoek, 1883)

Family Balanidae Leach, 1817
Megabalanus tulipiformes (Ellis, 1758).

Family POECILASMATIDAE Annandale, 1910

Octolasmis nierstraszi (Hoek, 1907)
(Fig. 1A)

Material. — CORINDON II: station 263, Strait of Makassar, 80 m (1 specimen).

Records. — Hoek, 1907a: 21, 19 stations East Indies, 16-120 m; Nilsson-Cantell, 1921: 268, Japan, 135 m; Nilsson-Cantell, 1927: 762, Persian Gulf; Nilsson-Cantell, 1934a: 60, Malaysia, 73 m; Broch, 1931: 40, Kei ls, 38-50 m; Hiro, 1937a: 414, Japan, 24 m (i.e., Persian Gulf, Malaysia to Japan, 16-135 m). Foster & Buckeridge, 1994: 348, La Réunion, 75-92 m. On hydroids, etc.

Remarks

The bilobed tergum and narrowly split scutum clearly distinguish this species, but it is apparent that there is variation in the shape of the basal arm of the scutum, in some cases making the scutum tri-lobed.
Poecilasma kaempferi Darwin, 1851
(Fig. 1B)

Material. — BALGIM: CP156, 1135 m (1 specimen); DW157, 1108 m (1).

Remarks

This is a frequently reported species (see Zevina, 1982: 98-100 for full records and synonyms; also Rosell, 1989: 22 for a new Philippines record), as an epizoite on benthic invertebrates, particularly decapod crustaceans, circumglobal, 126-1885 m. The subspecies aurantia Darwin, dubium Hoek, litum Pilsbry and novaeangliae Pilsbry are probably ecotype variants. In specimens collected from the same lobster or crab in New Zealand waters, there is a wide range of shell variations, seemingly associated with position on, or proximity to mechanical disturbances from the various appendages of the host.

Family SCALPELLIDAE Pilsbry, 1907

Subfamily CALANTICINAE Zevina, 1978

Smilium acutum (Hoek, 1883)
(Fig. 1C)

Material. — BALGIM: CP65, 1805 m (1 specimen); CP68, 2035 m (3); CP69, 2028 m (23); DR82, 355 m (4). BIOGAS V: CP07 (off Cape Finisterre), 2170 m (5). EPI I: CP38 (Gulf of Gascogne), 2100 m (1); CP39, 2175 m (1). BIOCYAN II (Bay of Biscay): PL18, 2000 m (3).

Remarks

This widely distributed, frequently encountered and distinctive barnacle was first described by Hoek (1883) from material from both the North Atlantic and the South-West Pacific Oceans. It occurs on a wide variety of substrata, including hydroids, crustaceans, spicules. It nicely

Fig. 1. — Poecilasmatidae and Scalpellidae: A, Octolasmis nierstraszi CORINDON II Stn 263. B, Poecilasma kaempferi BALGIM, CP156. C, Smilium acutum BALGIM, CP69. Scales in mm. Capitular plates: c, carina; s, scutum, t, tergum, ul, upper latus, c.l., carinolatus, rl, rostrolatus, iml, inframedian latus, sc, subcarina. Poecilasmatidae et Scalpellidae: A, Octolasmis nierstraszi CORINDON II Stn 263. B, Poecilasma kaempferi BALGIM, CP156. C, Smilium acutum, BALGIM, CP69. Échelles en mm. Plaques capitulaires: c, carina; s, scutum, t, tergum, ul, latus supérieur, c.l., carinolatus, rl, rostrolatus, iml, latus inframédian, sc, subcarina.
demonstrates the degree of variation in shell morphology (mostly ontogenetic change in capitulum dimensions — the capitulum becoming more elongate and the tergum reflexed, the peduncle with more numerous closely compact scales), and a circum-global distribution in moderately deep water.

The collection of 41 specimens from 8 stations (355-2175 m) in the North Atlantic Ocean of this report is comparable to the 199 specimens from 23 stations (391-1220 m) resulting from New Zealand Oceanographic Institute sampling in New Zealand waters (FOSTER, 1978).

Subfamily **Scalpellinae** Pilsbry, 1907

Triangulocalpellum regium (W. Thomson, 1873)
(Figs 2A-D, 3)

Material. — BIOGAS VII (Bay of Biscay): CP28, 3380 m (2 specimens). BIOGAS VIII (Bay of Biscay): CP30, 3100 m (21).

Records. — Thomson, 1873: 347, and Hoek, 1883: 106, North Atlantic, 5029-5212 m; Gruvel, 1920: 30, off Cape Finisterre, 2779 m. Not Pilsbry, 1907a: 28, off Chesapeake Bay, 3740 m, = T. gigas, see below. As molle Aurivillius, 1898: 191, Azores 845-1023 m; and Gruvel, 1920: 29, Azores, 4020 m. As var. ovale Hoek, 1883: 109, North Atlantic, 5212 m. As var. latidorsum Pilsbry, 1907a: 29, off New York, 1812-2940 m. (i.e., North Atlantic, 845-5212 m). Foster & Buckeridge, 1994: 355, La Réunion, 4030 m.

Remarks

The illustrations of 4 specimens from CP30 show the change in capitulum form with growth. The plates maintain close approximation, except for the carinolaters which become more widely displaced from each other below the carina. There is a widening of the lateral aspect of the capitulum to an oval form in larger specimens. The species can reach a large size (47 mm capitulum length and 33 mm peduncle length in the present material). The plates are robust, brownish, with relatively smooth surfaces and faint growth ridges. The carina has obvious lateral sides. The integument between the plates is variously hirsute. The lower latera possess a low profile, with the apex of the carinolatus characteristically curled across the base of the carina to slightly overlap the upper latus at this position in smaller specimens.

The mandible is tridentoid. The segmentation of the posterior cirri increases with size of the animal (Fig. 3); that of cirrus I and the caudal appendages, with lower numbers of segments,

Fig. 3. — Scalpellidae: Trianguloscalpellum regium BIOGAS VII CP30. Mean numbers of segments of rami as a function of size of specimen. For anterior (a) and posterior (p) rami of cirrus I (average of 2); all rami of cirrus II-VI (average of 4); both caudal appendages (ca), average of 2.

Scalpellidae: Trianguloscalpellum regium BIOGAS VII CP30. Nombres moyens de segments des rames en fonction de la taille des spécimens. Rames antérieure (a) et postérieure (p) du cirrhe I (moyenne de 2 relevés); ensemble des rames des cirrhes II-VI (moyenne de 4 relevés); ensemble des appendices caudaux (ca), moyenne de 2 relevés.
much more constant. The caudal appendage reaches about 0.5 times the length of the pedicle of cirrus VI. Penis absent. Complemental males carried in interscutal pouches.

Trianguloscalpellum gigas (Hoek, 1883)
(Fig. 2E)

Material. — GASCOR (Bay of Biscay): CP42, 3815 m (3 specimens).

Record. — Hoek, 1883: 102, mid North Pacific, 3749 m.

Remarks

This species is similar to *T. regium*, but is distinguished by the less rounded profile of the capitulum, with a proportionally longer upper latus and scutum. The plates are less glossy, and the carina is rounded, without lateral sides. Most significantly, this species is a hermaphrodite; it has a penis. The type specimen in the British Museum of Natural History conforms to this.

Hoek (1883) thought that there was a close relationship between *T. gigas* and *T. darwini* (Hoek). This latter species was described on the basis of a single large specimen (48 mm capitulum length, 31 mm peduncle length) from off Chile in the South-East Pacific. Examination of this specimen in the British Museum shows it lacks a penis, and it is more likely that Hoek’s *Scalpellum darwini* is *T. regium*, and that Pilsbry’s (1907) and Zevina’s (1981: 309) specimens are *T. gigas*. Both species would thus occur in deep seas around the world.

Arcoscalpellum michelottianum (Seguenza, 1876)
(Figs 2F-H, 4)

Material. — BALGIM: CP10, 1592 m (14 specimens); CP17, 1470 m (3); CP63, 1510 m (27); CP65, 1805 m (5); CP68, 2035 m (10); CP69, 2028 m (2); CP92, 1182 m (15); CP95, 1378 m (25); CP97, 1515 m (9); CP99, 1870 m (10). EPI VI: KG229 (off Brest), 2160 m (1).

Records. — Newman & Ross, 1971: 71, off Greenland, 3404-3422 m and off South Carolina, 3010 m; Rao & Newman, 1972, Jonston Atoll, Mid-Pacific Ocean; Roessel, 1989: 17, Philippines, 682-770 m. *As velutinum* Hoek, 1883: 96, off Cape St Vincent, 1656 m and off Tristan da Cunha, 2606 m; Gruvel, 1902: 56, off Canary Is, 882-2000 m; Pilsbry, 1907a: 26, western North Atlantic, 64-1962 m; not Annandale, 1913: 229, India, 786 m, = annandale Calman, 1918: 109; Calman, 1918: 109, Java-Australia, 732-1280 m, and Aden-Zanzibar, 1097 m; Gruvel, 1920: 27, Azores, 1331 m, off Nova Scotia, 1458 m; Barnard, 1925: 1, South Africa; Nilsson-Cantell, 1927: 743, Singapore; Broch, 1931: 18, off Hong Kong, 760 m; Stubbings, 1936: 28, Zanzibar, 690-762 m; Zevina, 1972: 43, South-East Pacific, 660-700 m. *As eximium* Hoek, 1883: 100, off Tristan da Cunha, 1828 m. *As sordidum* Aurivillius, 1898: 190, off New Foundland, 1267 m and off Portugal, 2028 m; Gruvel, 1920: 27, Canary Is, 1098 m. *As erectum* Aurivillius, 1898: 192, Azores 1135-1165 m. *As alatum* Gruvel, 1900a: 192, 1902: 57. Distribution is, therefore, circumboreal, 64-3422 m. Long known as *Arcosalpellum velutinum* Hoek, 1883 but synonymised with fossils by Withers (1953).

Remarks

This species is commonly encountered in the Atlantic Ocean (for full synonymy see Zevina, 1981: 343 and Newman & Ross, 1971: 71). Newman & Ross (1971) gave much needed description of young stages. To further augment the description, particularly with regard to changes that occur during growth, 15 of the specimens from CP95 were dissected, and 4 are illustrated in Figure 2.
This barnacle is hirsute, particularly in young stages, finely so in the larger specimens. The plates are approximate, the capitulum elongate because of an elongate scutum and upper latus (compared with T. gigas and T. regium). The lower latera are proportionately low, and the apexes of the inframedian latus projects above the upper line of the rostro- and carinolatera. The apexes of the carinolatera curve towards but do not overlap with the lower carinal border of the upper latus.

Mandibles tridentoid except in one large specimen (21 mm capitulum length) in which a small extra tooth occurs below the upper tooth. Penis absent. The numbers of segments in the rami of the cirri and caudal appendage increase with size of the individuals (Fig. 4). It is interesting to compare the numbers and trends with those of T. regium (Fig. 3). Size for size it is not possible to distinguish the two species on this sort of numerical data.

The material includes a solitary juvenile from CORINDON II Stn 248 at 170 m; it is clearly scalpelline, and might be A. michelottianum, but without co-occurring adults, identification is uncertain. Isolated juvenile stages of any scalpelline are difficult to identify, because of the similar arrangement of plates in juveniles.

Arcoscalpellum crenulatum n. sp.

(Fig. 5A-F)

Material. — BIOGAS VIII (Bay of Biscay): CP30, 3100 m (2 specimens: holotype MNHN Ci 2132; paratype MHNH Ci 2133).
DESCRIPTION OF HOLOTYPE

15.2 mm capitulum length. Capitulum higher than wide. Tergum triangular, apex erect. Carina simply bowed, flat roofed, with strong longitudinal ridges on each side. Scutum quadrangular, apex acute and curved over the tergum, upper margin concave and with secondary growth flange towards the tergum, upper latus margin hollowed out below the upper angle for reception of apex of upper latus. Upper latus pentagonal, with concave margin towards scutum, bearing a narrow rib along this margin, and lower margin mostly abutting the rostrolatus but also touching the inframedian latus. Carinolatus pentagonal, carinal margin concave, and occludent margin projecting slightly beyond the carina below the carina. Inframedian latus triangular, penetrating in these specimens, to the lowest corner of the upper latus. Rostrolatus rectangular, with the lateral margin abutting both the inframedian latus and the upper latus, the margin against the scutum crenulate to the extent of the abutment with the ridge of the upper latus.

Cirri I and II with anterior rami slightly shorter than posterior rami; segments of Ia 1.5 times as wide as those of posterior ramus. Caudal appendages as long as pedicle of cirrus VI. Intermediate segments of posterior cirri with 3 pairs of setae on anterior edge; a single spine on the posterior edge of posterior ramus only.

Segment counts, anterior ramus first:

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>ca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8,9</td>
<td>12,17</td>
<td>17,19</td>
<td>21,17+</td>
<td>23,22</td>
<td>22,26</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7,11</td>
<td>14,16</td>
<td>18,19</td>
<td>16+,16+</td>
<td>21,21</td>
<td>22,25</td>
<td>5</td>
</tr>
</tbody>
</table>

REMARKS

This species closely resembles Amigdoscalpellum aurivilli (Pilsbry) from off Cape Hatteras, and also Arcoscalpellum pertosum Foster from New Zealand in the way the plates are apposed.

Fig. 5. — Scalpellidae: A-F, Arcoscalpellum crenulatum sp. nov. A, BIOGAS VIII, CP30 holotype (15.2 mm c.l.); B, ditto, paratype, (13.0 mm c.l.); C, cirrus I; D, cirrus II; E, intermediate segments cirrus VI; F, pedicle cirrus VI and caudal appendage.

Scalpellidae : Arcoscalpellum crenulatum sp. nov. : A, BIOGAS VIII, CP30 holotype (15,2 mm l.c.); B, ditto, paratype, (13,0 mm l.c.); C, cirrhé I ; D, cirrhé II ; E, segments intermédiaires du cirrhé VI ; F, partie basale du cirrhé VI et appendice caudal.
However, the crenulate upper margin of the rostrolatus, the penetration of the inframedian latus all the way to the upper latus, and the relatively short occludent margins of the carinolatera below the carina, set the CP30 specimens apart. They are also from deeper water than the above named species.

Amigdoscalpellum praeceps (Hoek, 1907)

(Fig. 6A)

Material. — BIOGAS VIII (Bay of Biscay): CP30, 3100 m (1 specimen). BIOGAS XI (Bay of Biscay): CP35, 4720 m (1).

Record. — Hoek, 1907a: 114, East Indies, 411 m. Foster & Buckeridge, 1994: 356, La Réunion, 1660-2970 m.

Remarks

This slender barnacle possesses lightly sculptured plates which show, through ontogeny, a widening of the carinal tergal interspace and a reduction of the inframedian latus from full occupation of the space between the rostra- and carinolatera to about 0.2 times of it and displaced outwards in large specimens (Foster & Buckeridge, 1994).

Verum? minutum (Hoek, 1883)

(Fig. 6B-F)

Material. — BALGIM: CP68, 2077 m (13 specimens); CP69, 2028 m (3); CP99, 1870 m (3).

Record. — Hoek, 1883: 113, South-East Pacific, 2652 mm; Stubbings, 1936: 28, off Zanzibar, 802 m. Foster & Buckeridge, 1994: 358, La Réunion, 1850-3520 m.

Fig. 6. — Scalpellidae: A, Amigdoscalpellum praeceps BIOGAS XI, CP35 (l.c. = 27.8 mm c.l.). B-F, Verum minutum: B, BALGIM, CP68 (l.c. = 5.8 mm c.l.). C, BALGIM CP69, (l.c. = 3.8 mm c.l.). D, BALGIM, CP99 (l.c. = 2.2 mm c.l.). E, BALGIM, CP68 (l.c. = 4.8 mm c.l.) cirrus I, F, ditto, intermediate segment posterior ramus cirrus VI. Scales in mm.

**Scalpellidae: A, Amigdoscalpellum praeceps BIOGAS XI, CP35 (l.c. = 27.8 mm). B-F, Verum minutum: B, BALGIM, CP68 (l.c. = 5.8 mm). C, BALGIM CP69, (l.c. = 3.8 mm). D, BALGIM, CP99 (l.c. = 2.2 mm). E, BALGIM, CP68 (l.c. = 4.8 mm) cirre 1. F, ditto, segments intermédiaires de la rame postérieure du cirre VI. Échelles en mm.
Remarks

Barnacle small, slender, non-hirsute, with smooth, non-striated plates, and faint growth ridges. Scutum and upper latus elongate, without secondary growth flanges. Carina slightly bowed in upper part. Tergum elongate, apex not curved. Carinolatus slightly higher than wide. Ros- trolatus quadrangular, with slight convexity on occludent margin. Inframedian latus very narrow, slightly wider near the upper extremity, umbo apical, and with very short scutal and upper latus margins. The apex of the inframedian latus is club-shaped, tipped towards the rostral margin, and displaced slightly from it in larger specimens (FOSTER & BUCKERIDGE, 1994).

Meroscalpellum bifurcatum (Zevina, 1973)
(Fig. 7A, B)

Material. — BIOGAS XI: CP35 (off Tristan da Cunha), 4720 m (1 specimen). WALDA: CY09 (off Angola), 4613 m (1).

Remarks

This is one of the scalpellines which show in the adult form variously reduced plates and marked cuticular spaces between these plates. ZEVINA (1981) gives illustrations of 11 mm and 20 mm capitulum length specimens. Not only does the degree of capitular plate coverage decrease in larger specimens, but the shapes of the plates themselves (except the carina) are increasingly irregular.

Similar sequences of capitulum variations and changes have been documented for Neoscalpellum debile (Aurivillius) by ZEVINA (1981) and for Litoscalpellum intermedium (Hoek) by FOSTER (1980). These instances serve as examples of the problems associated with a taxonomy based on isolated specimens, and possible confusions among generic assignments.
Verum novaezelandiae (Hoek, 1883)
(Fig. 7C-E)

Material. — BALGIM: CP10, 1592 m (1 specimen). EPI I: CP38 (Bay of Biscay), 2100 m (14); CP39, 2100 m (7). CORINDON II (Makassar Strait): Stn 236, 1730 m (1).

Remarks
This species was well represented in collections from New Zealand (Foster, 1978, 1980). It is clear that this deep water species is widespread. The present records confirm the Atlantic Ocean records of Gruvel (1902).

V. novaezelandiae is recognised by the very slender capitulum in which the carinolatus is markedly elongated to match a pronounced apical growth of the inframedian latus. This latter plate remains narrow, with clear edges to the upper latus and scutum. With growth, the umbo of the inframedian latus is placed closer to the basal margin. In some specimens the rostrolatus is very narrow, particularly if growth of the peduncle has been bent to the rostral side.

Appendage counts for CP39 specimens are as follows:

<table>
<thead>
<tr>
<th>cl(mm)</th>
<th>Ia</th>
<th>lb</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>6.0</td>
<td>7</td>
<td>9</td>
<td>14</td>
<td>17</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>7.6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>19</td>
<td>–</td>
<td>24</td>
<td>–</td>
<td>6</td>
</tr>
</tbody>
</table>

The appendage details conform to New Zealand specimens (Foster, 1978).

Verum frillosum nov. sp.
(Fig. 8)

Material. — BIOGAS VII: CP28 (Bay of Biscay), 3380 m (1 specimen, holotype MNHN Ci 2135).

Description of Holotype
18.0 mm capitulum length. Peduncle only partially intact, scales wide. Tergum triangular, apex recurved, dorsal margin notched for reception of carina. Carina simply bowed. Scutum pentagonal, upper margin with secondary growth flange against tergum, lateral margin slightly concave, lower margin sinuous in conjunction with rostro- and inframedian latus. Inframedian latus hourglass-shaped, upper part wider than lower part, with sinuous margins to scutum and upper latus. Upper latus pentagonal, upper margin with secondary growth flange towards apex, margins to inframedian- and carinolatus sinuous. Carinolatus higher than wide, upper margin sinuous, occludent margin beneath carina short. Rostrolatus broadly quadrangular.

Mandible tridentoid, lower angle acuminate. Maxillule with 2 stout spines at upper angle, bunch of shorter spines at lower angle. Cirrus I with anterior ramus intermediate segments 2 times
width of those of posterior ramus. Mean numbers of segments in cirri as follows, anterior ramus first:

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>ca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8,12</td>
<td>16,19</td>
<td>20,20</td>
<td>24,24</td>
<td>24,24</td>
<td>25,25</td>
<td>3</td>
</tr>
</tbody>
</table>

Intermediate segments cirrus VI with 5 pairs of setae on anterior edge, no setae midway on posterior edge. Caudal appendages 2-3 segments, just longer than pedicle of cirrus VI.

REMARKS

This barnacle is similar to *Verum constrictum* but lacks constricted rostrolatera, and the growing edges of the upper latus, rostrolatus, carinolatus and inframedian latus are sinuous in accord with the alternating and interlocking growth ridges of these plates.

Ornatascalpellum stroemii (M. Sars, 1859)

(Fig. 9A)

Material. — BALGIM: DR82, 355 m (3 specimens).

Remarks

The synonymy of 4 of *Aurivillius’* (1892, 1894) and 3 of *Pilsbry’s* (1907a) names within *O. stroemii* (see *Zevina*, 1981: 111) illustrates the variation within at least some of the scalpelline
species, and the tendency to name this variation by early taxonomists. Pilsbry (1907a: 21) was troubled about Hoek’s (1883) illustration of the species, particularly the latter giving the impression that the scutum, inframedian latus and upper latus have subcentral umbos, and also with the proportions of the upper latus. There may have been some over-artistry in Hoek’s plates (not confined to this species), but the fact is that during ontogeny the position of the umbo of the inframedian latus becomes progressively displaced from the apex, and both the upper latus and carina also develop apical growth zones. The rectangularly bent carina, in its upper part, results from displacement of the umbo, as it is in Scalpellum scalpellum.

This is a relatively shallow water scalpelline, often collected in fishing trawls. Stn DR82 is off the Morocco coast, and is a southernmost record of the species.

Scalpellum scalpellum (Linnaeus, 1767)

(Fig. 9B-D)

Material. — BALGIM: CP103, 347 m (21 specimens).

Records. — North-East Atlantic, Norway (68° N) to Congo (6° S), 50-366 m; Mediterranean (Relini, 1980: 93, Italian seas, to 400 m). See Zevina, 1981: 95 for synonymies and references.

Remarks

Of all the 18 species considered in this collection, this is the only one in which the umbo of the scutum is displaced from the apical position. The relatively square lateral shape of the capitulum is produced by considerable subapical displacement of the umbos of the carina and upper latus.

This is a relatively shallow occurring barnacle. It is frequently encountered on hydroids and hydroid-like growths on trawling grounds, and is a well-known barnacle to European marine naturalists. This is the only known species of the Scalpellinae from the Mediterranean Sea (Relini, 1980).

![Fig. 9. — Scalpellinae: A, Ornatoscalpellum stroemii BALGIM, DR82, group, largest 5.5 mm c.l. B, Scalpellum scalpellum BALGIM, CP103 (13.5 mm c.l.), C, dito (6.2 mm c.l.), D, dito (3.0 mm c.l.). Scales in mm.](image-url)
Family VERRUCIDAE Darwin, 1854

DISCUSSION

There are 83 named species of verrucid (BUCKERIDGE, 1994, FOSTER & BUCKERIDGE, 1994). They are asymmetrical sessile barnacles having a shell wall composed of carina, rostrum, fixed scutum and fixed tergum, and an operculum of movable tergum and movable scutum. Nomenclature of these plates is shown in Fig. 10A. A fuller discussion of the morphology and genera is available in BUCKERIDGE (1994).

The present material is particularly rich in verrucids, both in the number of determined species (4) and individuals (420). Furthermore, the BALGIM collections are in the locality from which AURIVILLIUS (1898) and GRUVEL (1900b, 1902, 1905, 1912) named and/or described many species.

Verruca trisulcata Gruvel, 1900
(Figs 10, 11, 12)

Material. — BALGIM: CP90, 890 m (9 specimens); CP91, 948 m (4); CP92, 1182 m (70); CP95, 1378 m (22); CP156, 1135 m (252); DW157, 1108 m (28); CP160, 1350 m (9).

Remarks

A range of shell forms is illustrated to show the range from low splayed (half as high as wide) to quite upstanding (higher than wide) posture. Of 26 shells from CP92 (Fig. 11) the height: width ratio ranges from 0.5 to 1.0, with no significant trend with size of specimen. Also, with growth, the number of interlocking ribs between the movable tergum and scutum, and between the carina and rostrum, increases from 1 in juveniles to 4 in specimens of about 6 mm rostrocarinal length. A characteristic feature of the shell is the particularly wide superior rib on the rostrum. The apices of the rostrum and carina are never turned inwards. The “back” view (i.e. of the fixed tergum and scutum) is highly variable; tall with easily discernable alae and radial growth areas, or squat and contorted depending on irregularities of substratum. Movable scutum apex curved over the superior articular groove, with a moderately deep apical pit internally. Movable tergum broadly quadrangular, 1.5 times width of scutum, lower angle protruding as apical ridge.

Mandible tridentoid, with a pectinate lower edge. Maxillule with an irregular cutting edge, the lower angle protuberant (a feature common in verrucids). Cirrus I anterior ramus just over 0.5 times length of posterior ramus. Cirrus II anterior ramus less than 0.5 times length of posterior ramus. Cirrus III-VI with subequal rami. Caudal appendage about 0.66 times length of cirrus VI. Plots of the numbers of segments per rami (Figure 12) show increasing numbers of segments in all rami with increasing size of the specimen. Caudal appendage 0.5 times length of cirrus VI.
The type locality for *V. striata* is also in the Atlantic Ocean. It seems unavoidable that *trisulcata*, *imbricata*, *striata* and *radiata* are synonymous. Because the number of articular ribs on the movable tergum is not constant, nor is the overall shell shape, it may be that *V. grimaldi*
Fig. 11. — Verrucidae: *Verruca trisulcata*, BALGIM, CP92: ratio of maximum shell height to maximum shell width plotted as a function of rostro-carinal length. A ratio of 1.0 is a shell as high as wide; 0.5, half as high as wide. Regression: \(y = 0.49 + 5.14x \), \(n = 25 \), \(R = 0.028 \), no significant slope.

Verrucidae : *Verruca trisulcata*, BALGIM, CP92 : rapport de la hauteur maximale de la coquille à sa largeur maximale en fonction de la longueur rostro-carinale. Un rapport de 1,0 correspond à une coquille aussi haute que large ; de 0,5, moitié moins haute que large. Régession : \(y = 0.49 + 5.14x \), \(n = 25 \), \(R = 0.028 \), pas de pente significative.

Fig. 12. — Verrucidae: *Verruca trisulcata*, BALGIM, CP92: Mean numbers of segments of rami as a function of size of specimen. For anterior (a) rami of cirri I-III and posterior (p) rami of cirri I and II, and all rami of cirri IV-VI, and caudal appendages (ca).

Altiverruca gibbosa Hoek, 1883
(Fig. 13A, B)

Records. — Hoek, 1883: 134, Crozet Is, 1893 m; Nilsson-Cantell, 1928: 25, Celebes, 3056 m (see for synonymy sulcata, bicornuta, mitra); Broch, 1931: 45, East Indies, 385 m; Zevina, 1971: 439, off Chile, 1230-1700 m; Newman & Ross, 1971: 135, South Georgia, 1098-1153 m; Foster, 1981: 352, Kermadec Is and Norfolk I, 590-949 m. As gibbosa somaliensis Nilsson-Cantell, 1929: 470, East-African coast, 1079-1289 m. As bicornuta Pilsbry 1916: 43, off Nantucket, 3127 m. As sulcata Hoek, 1883: 139, off New Zealand, 950-1165 m. As mitra Hoek, 1907b, Antarctic Peninsula, 555 m. As darwini Pilsbry, 1907a: 111, off Cape May, 2844 m. As rathburniana Pilsbry, 1916: 41, off Cape Cod, 3235 m; Nilsson-Cantell, 1927: 776, Cape Verde Is, 1812 m.

Remarks
The single empty shell is a dirty yellow colour with clearly delimited growth lines. Basal maximum length (rostrocarinal) 4.5 mm; apical rostrocarinal length (rcl) 5.2 mm; i.e. apex of carina flared outward. Tergal height 5.0 mm. The operculum orifice is at an angle of 45 degrees to the base.

A. gibbosa is distinguished from V. trisulcata by the ridges and shelf above the superior articular ridge of the rostrum, and from V. sinuosa (above) by the very definite sculpturing of the whole shell. A single specimen does not permit any examination of existing or further synonymy, but it does show how a widely distributed, recorded and considered barnacle can be sparsely represented in intensive collecting.

Altiverruca vertica n.sp.
(Fig. 14)

Material. — BALGIM: CP92, 1182 m (1 specimen: holotype MNHN Ci 2138).

Description of Holotype
3.2 mm umbo rostrocarinal length (rcl): shell higher than wide, with operculum held nearly perpendicular to base. Base calcareous. Carina higher than rostrum; upper margins to movable
opercula continuous and shallowly concave. Rostrum broadly quadrangular; suture with carina without interlocking. All plates lightly sculptured with growth lines. Movable tergum square, and with 2 broad articular ribs above a barely defined diagonal rib. Movable scutum 0.5 times width of tergum, with diagonal rib placed close to articular edge, and internally with a deep muscle pit apically.

Cirrus I with anterior ramus 1 segment longer than posterior ramus. Cirri II and III with anterior rami shorter than posterior rami. Cirri IV-V damaged. Cirrus VI with 25 segments in subequal rami, and intermediate segments with 2 pairs of setae on the anterior edge. Mean segments per rami as follows, anterior ramus first:

\[
\begin{array}{cccccc}
I & II & III & IV & V & VI \\
10,9 & 7,10 & 13,16 & 20,22 & - & 25,25 \\
\end{array}
\]

Caudal appendages 0.5 times length of basal podomere of pedicle of cirrus VI.

Remarks

This species is represented by a solitary specimen. It is similar to *quadrangularis*, being lightly sculptured, smooth surfaced, the operculum held at a steep angle to the base, and the
rostrum and carinal in “front” view broadly quadrangular, but there is no interlocking between rostrum and carina; further, the scutum is much narrower. The specimen is larger than the largest V. quadrangularis, and it is notable that the caudal appendages are more diminutive. The shell resembles V. casula Hoek, 1913, of Malaysian seas; the appendages of V. casula have not been described, and V. casula is notable for the broad rostral rib interlocking with the carina.

Metaverruca recta (Aurivillius, 1898)

(Fig. 15)

Material. — BALGIM: CP92, 1182 m (10 specimens); CP95, 1378 m (9); CP97, 1515 m (2); CP109, 1200 m (1); DW157, 1108 m (1). EPI I: CP38 (Celtic Sea), 2100 m (1).

Fig. 15. — Verrucidae: *Metaverruca recta.* A, top view (4.5 mm rcl) BALGIM, CP95. B, oblique view (5.1 mm rcl) BALGIM, CP92. C, D, outer views scutum and tergum (of 5.1 mm rcl specimen) BALGIM, CP92. E, F, inner views, *ditto.* G, cirrus I; H, cirrus II; I, pedicle cirrus VI; penis and caudal appendages; J, intermediate segments cirrus VI; all of 5.0 mm rcl specimen, BALGIM, CP95, and all to same scale. Scales in mm.

Verrucidae: *Metaverruca recta.* A, vue de dessus (Ire = 4,5 mm) BALGIM, CP95. B, vue oblique (Rcl = 5,1 mm) BALGIM, CP92. C, D, vues externes du scutum et du tergum (spécimen ayant une Ire de 5,1 mm) BALGIM, CP92. E, F, vues internes, *ditto.* G, cirrhe I; H, cirrhe II; I, partie basale du cirrhe VI, pénis et appendices caudaux; J, segments intermédiaires du cirrhe VI; provenant tous d’un spécimen ayant une Ire de 5,0 mm, BALGIM, CP95, et tous à la même échelle. Échelles en mm.
Remarks

Accepting the synonymies, this is a widespread barnacle, from North Atlantic through Indian to North and South Pacific Oceans. It is characterised by its particularly compact form, more roundly sessile than narrowly erect like V. quadrangularis, with the apeces of the rostrum and tergum set in from the basal margin (i.e. the shell is conical rather than splayed), with the upper ribs between the rostrum and carina very wide, mostly 2, sometimes 3 of them; by the edge of articulation of the movable plates forming a straight line between the apeces of the rostrum and carina; by the general D-shape of the orifice; by the operculum being held at an angle 45-90 degrees to the perpendicular depending on the nature of the substratum; by the myophores; and by the generally large size of grown specimens for the genus (8-10 mm basal length). The appendages have been described by FOSTER (1978) and BUCKERIDGE (1994); notable is the shortness of the caudal appendages.

Mean numbers of segments in cirri of 4 specimens (CP95) as follows, anterior ramus first:

<table>
<thead>
<tr>
<th>rcl (mm)</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>6.5</td>
<td>5.6</td>
<td>8.10</td>
<td>15.17</td>
<td>16.14</td>
<td>14.17</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>7.6</td>
<td>5.7</td>
<td>9.12</td>
<td>15.16</td>
<td>19.19</td>
<td>21.21</td>
<td>5</td>
</tr>
<tr>
<td>2.9</td>
<td>12.9</td>
<td>8.11</td>
<td>18.21</td>
<td>22.26</td>
<td>26.28</td>
<td>30.31</td>
<td>7</td>
</tr>
<tr>
<td>4.3</td>
<td>12.10</td>
<td>8.12</td>
<td>19.20</td>
<td>20.21</td>
<td>23.22</td>
<td>20.21</td>
<td>7</td>
</tr>
</tbody>
</table>

Family PACHYLASMATIDAE Buckeridge, 1983

Pachylasma giganteum (Philippi, 1836)
(Fig. 16A, B)

Material. — BALGIM: DR37, 864 m (3 shells); DR40, 362 m (75 specimens, 14-34 mm basal diameter); DR49, 521 m (1 specimen); DR111, 285 m (6 specimens); DR115, 352 m (1 shell); DW116, 340 m, (1 shell); DR152, 550 m (1 shell); DR153, 580 m (99 specimens, 6-47 mm basal diameter).

Remarks

This barnacle is well described by DARWIN (1854), who quoted a maximum size of 29.2 mm basal rostrocarinal length. Very small specimens have no carinolatera. Few of the records of this barnacle give depth data. The present records are precise, 285-864 m, just west of the Straits of Gibraltar. Four of the stations yielded only shells (easily recognised by their thickness and the irregular basal edges) and 2 of the stations yielded rock substratum with large numbers of specimens growing on it and themselves.
Family BATHYLASMATIDAE Newman & Ross, 1971

Bathylasma hirsutum (Hoek, 1883)
(Fig. 16C, D)

Material. — BALGIM: CP36, 990 m (1 shell only); DR37, 864 m (72 shells).

Records. — See Newman & Ross (1976: 46) for full references, and distribution "Northeast Atlantic from Faroe Is to Azores, 944-1829 m". Southward & Southward (1958) give a useful list of collecting data, including depth range of 384-1829 m.

Remarks

These 2 stations are a little further south than the stations listed by Southward & Southward (1958) but do not constitute a significant addition to the known distribution. The large number of shell plates at Stn DR37 (Bay of Cadiz) is quite reminiscent of similar collections of plates of B. corolliforme from the Southern Ocean (Newman & Ross, 1971) and of B. alearum from New Zealand (Foster, 1978). Evidently, the shell plates of deep water bathylasmatids accumulate in-situ in proximity to appropriate attachment substrata, and in themselves provide substrata for further recruitment and accumulation.

Family BALANIDAE Leach, 1817

Megabalanus tulipiformis (Ellis, 1758)
(Fig. 16E, F)

Material. — BALGIM: DR40, 362 m (4 shells); DR115, 352 m (1 shell plate); DR133, 195 m (1 specimen).

Remarks

Previous authors have noted the occurrence of *M. tulipiformis* with *Pachylasma giganteum*. The single shell plate recovered from station DR115 together with *P. giganteum* was readily identified by its rose pink colour. In the BALGIM collections, *M. tulipiformis* is the only barnacle recovered from any station in the Mediterranean (DR133), and it was the only live material of this species.

BIOGEOGRAPHY

Summary data are presented in Table 1, which gives the number of stations, number of individuals and depth data from these collections and from the literature, for each of the species. Full station data are given in Appendix A.

The frequency of recovery of barnacles in the deep sea grabs and dredges is 23% (29 of 126 stations) for the BALGIM cruise, yielding 882 specimens (14 species).

The North Atlantic Ocean stations (29 BALGIM plus 9 others) provided 20 species, including 2 new to science (*Arcoscalpellum crenulatum* and *Verum frillosum*).

There are 5 species common to New Zealand and the North Atlantic (*Poecilasma kaempferi, Smilium acutum, Verum novaezelandiae, Altiverruca gibbosa* and *Metaverruca recta*). These seem to be part of a circumglobal, or at least North Atlantic to South-West Pacific barnacle fauna, in moderately deep water (1000-2000 m).

Whether deeper sea (>3000 m) species such as *Trianguloscalpellum gigas, T. regium, Arcoscalpellum michelottianum* and *Meroscalpellum bifurcatum* are widespread is hard to ascertain from published records, but considering the more limited sampling from such depths they are likely to be so.

The more commonly collected species (i.e., 100 specimens) are: *A. michelottianum*, taken at 11 stations (121 specimens), *Verruca trisulcata*, at 10 stations (400 specimens), and *Pachylasma giganteum*, at 4 stations (181 specimens). The last of these, the shallowest occurring, is most likely restricted to the northern Atlantic Ocean and the Mediterranean Sea. The predominance of records from the North Atlantic, possibly reflects a longer history of collecting there. Biogeographic restrictions are likely to apply to other shallower sea species, (e.g., for the North Atlantic *Scalpellum scalpellum, Ormatoscalpellum stromii, Bathylasma hirsutum* and *Mega-balanus tulipiformis*), as they are to littoral species.

With respect to a principal aim of the BALGIM cruise, namely to relate Mediterranean outflow water to its deflection to the northern side of the Ibero-Moroccan Bay, it is noteworthy that stations that have *Bathylasma hirsutum, Pachylasma giganteum* or *Megabalanus tulipiformis*, do not have verrucomorphs or lepadoomorphs. Only one of these stations is in the Mediterranean Sea (DR133, which has *M. tulipiformis* only, and is the only station there to provide barnacles), two are on the sill of the Straits of Gibraltar (DR152 and DR153, with *P. giganteum* only), five are grouped just due west of the sill (DR40, DR49, DR111, DR115 and DW116, with both *M. tulipiformis* and *P. giganteum*), and two further northwest (CP36 and DR37, both with *P. giganteum and B. hirsutum*). The Mediterranean barnacle fauna does not have the deep ocean scalpellids and verrucids. The last 9 quoted stations are different from the other Atlantic stations, and could represent a Mediterranean influence.
Table 1. — Summary data on numbers of stations, individuals and depths for each of the species.

<table>
<thead>
<tr>
<th>Species</th>
<th>No of stations</th>
<th>Indiv. sample numbers</th>
<th>Total no</th>
<th>Depth range (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octolasmis niestraszi</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>Poecilasma kaempferi</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1108</td>
</tr>
<tr>
<td>Smilium acutum</td>
<td>8</td>
<td>1 3 23 45 1 1 3</td>
<td>41</td>
<td>355-2170</td>
</tr>
<tr>
<td>Trianguloscalpellum regium</td>
<td>2</td>
<td>22 1</td>
<td>23</td>
<td>3100-3380</td>
</tr>
<tr>
<td>Trianguloscalpellum gigas</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3815</td>
</tr>
<tr>
<td>Arcoscalpellum michelottianum</td>
<td>11</td>
<td>14 3 27 5 10 2 15</td>
<td>121</td>
<td>1182-2160</td>
</tr>
<tr>
<td>Arcoscalpellum crenatum n. sp.</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3100</td>
</tr>
<tr>
<td>Amigdoscalpellum praeceps</td>
<td>2</td>
<td>1 1</td>
<td>2</td>
<td>3100-4720</td>
</tr>
<tr>
<td>Verum? minutum</td>
<td>3</td>
<td>13 3 3</td>
<td>19</td>
<td>1870-2077</td>
</tr>
<tr>
<td>Meroscalpellum bifurcatum</td>
<td>2</td>
<td>1 1</td>
<td>2</td>
<td>46613-4720</td>
</tr>
<tr>
<td>Verum novacezlaniae</td>
<td>4</td>
<td>1 14 7 1</td>
<td>23</td>
<td>1592-2100</td>
</tr>
<tr>
<td>Verum frillsum n. sp.</td>
<td>1</td>
<td>1 3</td>
<td>1</td>
<td>3380</td>
</tr>
<tr>
<td>Ornatoscalpellum streaomi</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>355</td>
</tr>
<tr>
<td>Scalpellum scalpellum</td>
<td>1</td>
<td>21</td>
<td>21</td>
<td>347</td>
</tr>
<tr>
<td>Verruca trisculata</td>
<td>7</td>
<td>9 4 70 252 28 9 22</td>
<td>394</td>
<td>890-1378</td>
</tr>
<tr>
<td>Altiverruca gibosa</td>
<td>1</td>
<td>(1)</td>
<td>(1)</td>
<td>1527</td>
</tr>
<tr>
<td>Altiverruca vertica n. sp.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1182</td>
</tr>
<tr>
<td>Metaverruca recta</td>
<td>6</td>
<td>10 9 2 1 1 1</td>
<td>24</td>
<td>1108-2100</td>
</tr>
<tr>
<td>Pachylasma giganteum</td>
<td>8</td>
<td>(3) 75 1 6 (1) (3) 75</td>
<td>187</td>
<td>285-864</td>
</tr>
<tr>
<td>Bathyslamera hirsutum</td>
<td>2</td>
<td>(1) (72)</td>
<td>73</td>
<td>864-990</td>
</tr>
<tr>
<td>Megabalanus tulipiformis</td>
<td>3</td>
<td>(4) (1) 1</td>
<td>6</td>
<td>135-195</td>
</tr>
</tbody>
</table>

Acknowledgements

The authors thank Michel SEGONZAC of Centre national de tri d’océanographie biologique, Brest, for the invitation (to BAF) to study the material, and for sending them. Alain CROSNIER of the Institut français de recherche scientifique pour le développement en coopération (ORSTOM), Paris, provided extensive support and advice on manuscript preparation, revision and publication.

REFERENCES

APPENDIX A. — Cruise and station data, and barnacles and numbers of barnacles collected at each station.

ATLANTIC OCEAN

BALGIM. — A study to correlate composition of benthic fauna and origin of water masses between the Atlantic Ocean and Mediterranean Sea. This material was collected May-June 1984 aboard R.V. “Cryos” during cruise BALGIM, conducted for Centre national de la recherche scientifique (PIROCEAN), under the direction of Dr P. BOUCHET (Museum). Dates: 29.5.84-18.6.84.

<table>
<thead>
<tr>
<th>Stn</th>
<th>m</th>
<th>°N</th>
<th>°W</th>
<th>Species</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP10</td>
<td>1592</td>
<td>36.453</td>
<td>9.320</td>
<td>Arcoscalpellum michelottianum</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verum novaezelandiae</td>
<td></td>
</tr>
<tr>
<td>CP17</td>
<td>1470</td>
<td>36.453</td>
<td>9.308</td>
<td>Arcoscalpellum michelottianum</td>
<td>3</td>
</tr>
<tr>
<td>CP36</td>
<td>990</td>
<td>36.166</td>
<td>7.137</td>
<td>Bathylasma hirsutum</td>
<td>(1)</td>
</tr>
<tr>
<td>DR37</td>
<td>864</td>
<td>36.178</td>
<td>7.154</td>
<td>Pachylasma giganteum</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bathylasma hirsutum</td>
<td>(72)</td>
</tr>
<tr>
<td>DR40</td>
<td>362</td>
<td>35.499</td>
<td>6.086</td>
<td>Pachylasma giganteum</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Megabalanus tulipiformis</td>
<td>(4)</td>
</tr>
<tr>
<td>DR49</td>
<td>521</td>
<td>35.530</td>
<td>6.328</td>
<td>Pachylasma giganteum</td>
<td>1</td>
</tr>
<tr>
<td>CP63</td>
<td>1510</td>
<td>35.306</td>
<td>7.421</td>
<td>Arcoscalpellum michelottianum</td>
<td>27</td>
</tr>
<tr>
<td>CP65</td>
<td>1805</td>
<td>35.265</td>
<td>7.599</td>
<td>Smilium acutum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arcoscalpellum michelottianum</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smilium acutum</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arcoscalpellum michelottianum</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verum? minutum</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smilium acutum</td>
<td>23</td>
</tr>
<tr>
<td>CP69</td>
<td>2028</td>
<td>35.114</td>
<td>7.505</td>
<td>Arcoscalpellum michelottianum</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verum? minutum</td>
<td>3</td>
</tr>
<tr>
<td>DR82</td>
<td>355</td>
<td>33.455</td>
<td>8.320</td>
<td>Smilium acutum</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ornatoscalpellum stroemii</td>
<td>3</td>
</tr>
<tr>
<td>CP90</td>
<td>890</td>
<td>34.214</td>
<td>7.236</td>
<td>Verruca trisulcata</td>
<td>9</td>
</tr>
<tr>
<td>CP91</td>
<td>948</td>
<td>34.223</td>
<td>7.251</td>
<td>Verruca trisulcata</td>
<td>4</td>
</tr>
<tr>
<td>CP92</td>
<td>1182</td>
<td>34.243</td>
<td>7.303</td>
<td>Arcoscalpellum michelottianum</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verruca trisulcata</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Altiverruca vertica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Metaverruca recta</td>
<td>10</td>
</tr>
<tr>
<td>CP95</td>
<td>1378</td>
<td>34.240</td>
<td>7.393</td>
<td>Arcoscalpellum michelottianum</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verruca trisulcata</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Metaverruca recta</td>
<td>9</td>
</tr>
</tbody>
</table>
Bay of Biscay. — This material was collected during missions organised by IFREMER (Brest) between 1974 and 1987.

<table>
<thead>
<tr>
<th>Code</th>
<th>Number</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Species</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP97</td>
<td>1515</td>
<td>34.254</td>
<td>7.411</td>
<td>Arcoscalpellum michelottianum</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Metaverruca recta</td>
<td>2</td>
</tr>
<tr>
<td>CP99</td>
<td>1870</td>
<td>34.282</td>
<td>7.433</td>
<td>Arcoscalpellum michelottianum</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verum? minutum</td>
<td>3</td>
</tr>
<tr>
<td>CP103</td>
<td>347</td>
<td>34.107</td>
<td>7.298</td>
<td>Scalpellum scalpellum</td>
<td>21</td>
</tr>
<tr>
<td>CP108</td>
<td>1527</td>
<td>36.108</td>
<td>8.062</td>
<td>Altiverruca gibbosa</td>
<td>(1)</td>
</tr>
<tr>
<td>CP109</td>
<td>1200</td>
<td>36.145</td>
<td>7.564</td>
<td>Metaverruca recta</td>
<td>1</td>
</tr>
<tr>
<td>DR111</td>
<td>285</td>
<td>35.569</td>
<td>6.221</td>
<td>Pachylasma giganteum</td>
<td>6</td>
</tr>
<tr>
<td>DR115</td>
<td>332</td>
<td>35.475</td>
<td>6.042</td>
<td>Pachylasma giganteum</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Megabalanus tulipiformis</td>
<td>(1)</td>
</tr>
<tr>
<td>DW116</td>
<td>340</td>
<td>35.486</td>
<td>6.042</td>
<td>Pachylasma giganteum</td>
<td>(1)</td>
</tr>
<tr>
<td>DR133</td>
<td>195</td>
<td>35.258</td>
<td>4.174</td>
<td>Megabalanus tulipiformis</td>
<td>(1)</td>
</tr>
<tr>
<td>DR152</td>
<td>550</td>
<td>35.567</td>
<td>5.347</td>
<td>Pachylasma giganteum</td>
<td>(1)</td>
</tr>
<tr>
<td>DR153</td>
<td>580</td>
<td>35.558</td>
<td>5.353</td>
<td>Pachylasma giganteum</td>
<td>99</td>
</tr>
<tr>
<td>CP156</td>
<td>1135</td>
<td>36.200</td>
<td>7.527</td>
<td>Poecilasma kaempferi</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verruca trisulcata</td>
<td>252</td>
</tr>
<tr>
<td>DW157</td>
<td>1108</td>
<td>36.210</td>
<td>7.558</td>
<td>Poecilasma kaempferi</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verruca trisulcata</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Metaverruca recta</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verruca trisulcata</td>
<td>9</td>
</tr>
<tr>
<td>CP160</td>
<td>1350</td>
<td>36.146</td>
<td>8.009</td>
<td>Smilium acutum</td>
<td>5</td>
</tr>
<tr>
<td>BIOGAS V</td>
<td>2170</td>
<td>44.098</td>
<td>4.164</td>
<td>Smilium acutum</td>
<td>5</td>
</tr>
<tr>
<td>BIOGAS VII</td>
<td>3380</td>
<td>47.295</td>
<td>9.035</td>
<td>Trianguloscalpellum regium</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scalpellum frillosum</td>
<td>1</td>
</tr>
<tr>
<td>BIOGAS VIII</td>
<td>3100</td>
<td>47.296</td>
<td>9.061</td>
<td>Verum regium</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arcoscalpellum crenulatum</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amigdoscalpellum praeceps</td>
<td>1</td>
</tr>
<tr>
<td>BIOGAS XI</td>
<td>4720</td>
<td>46.343</td>
<td>10.230</td>
<td>Arcoscalpellum praeceps</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meroscalpellum bifurcatum</td>
<td>1</td>
</tr>
<tr>
<td>EPI I</td>
<td>2100</td>
<td>47.338</td>
<td>8.422</td>
<td>Smilium acutum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verum novaezelandiae</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Metaverruca recta</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smilium acutum</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smilium acutum</td>
<td>1</td>
</tr>
</tbody>
</table>
EPI VI

KG229 2160 47.270 8.320 *Arcoscalpellum michelottianum* 1

GASCOR. — This material was collected during mission GASCOR, from deep-sea modules placed by EPI (Environnement Profond: Impact), organised by IFREMER, Brest; chief, Gerard AUFFREt. Date: 16.3.86.

CP42 3815 46.227 12.368 *Triangulosscalellum gigas* 3

BIOCYAN. — This material was collected during mission BIOCYAN 2, with submersible CYANA, organised by Centre océanologique de Bretagne (COB, Brest); chief, Myriam SIBUET. Date: 26.6.83.

PL18 2000 47.321 8.276 *Smilium acutum* 3

WALDA. — This material was collected during mission WALDA, organised by Centre océanologique de Bretagne (COB, Brest). Collected off Angola. Date: 23.6.71.

<table>
<thead>
<tr>
<th>°S</th>
<th>°E</th>
</tr>
</thead>
</table>
| CY09 | 4613 | 19.103 | 9.181 | *Meroscalpellum bifurcatum* 1

SOUTH-WEST PACIFIC

CORINDON II. — This material was collected during the cruise CORINDON II, organised by ORSTOM: Responsible for biological data. Jacques FOREST (Museum). Dates: 29.10.80-12.11.80. Straits of Makassar, 15-2 400 m.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 236 | 1730 | 0.067N | 119.455 | *Verum novaezelandiae* 1
| 248 | 170 | 0.542S | 119.287 | scalpellid juvenile indet.
| 263 | 80 | 1.568S | 119.167 | *Octolasmis nierstraszi* 1